
Exploring Synergies between Machine Learning and Knowledge 
Representation to Capture Scientific Knowledge 

 
Imme Ebert-Uphoff 

School of Electrical and Computer 
Engineering  

Colorado State University 
Fort Collins, CO, USA 

iebert@engr.colostate.edu

  
Yolanda Gil 

Information Sciences Institute and 
Department of Computer Science 
University of Southern California 
Marina del Rey, CA 90292, USA 

gil@isi.edu 
 

ABSTRACT 

In this paper we explore synergies between the machine 
learning and knowledge representation fields by 
considering how scientific knowledge is represented in 
these areas.  We illustrate some of the knowledge obtained 
through machine learning methods, providing two 
contrasting examples of such models: probabilistic 
graphical models (aka Bayesian networks) and artificial 
neural networks (including deep learning networks).  From 
knowledge representation, we give an overview of 
ontological representations, qualitative reasoning, and 
planning.  Then we discuss potential synergies that would 
benefit both areas. 

Categories and Subject Descriptors 
I.2.4 [Knowledge Representation Formalisms and 
Methods]: Representation languages. 

General Terms 
Languages. 

Keywords 
Machine learning, knowledge representation, scientific 
knowledge. 

1. INTRODUCTION 
Scientists from many disciplines like to describe domain 
knowledge in terms of models that capture the most 
important relationships governing a phenomenon or system 
under consideration.  For example, mathematical models, 
such as differential equations, describe the dynamics of 
systems in disciplines ranging from engineering to natural 
sciences (e.g. physics, biology and earth sciences) and 
social sciences (e.g. economics, sociology and psychology). 
Thus, by definition, such models encode expert knowledge 
about a domain.  

Researchers in both statistics and machine learning have 
developed numerous techniques for the process of system 
identification, which is the process of deriving a model 
from observed data of a system, to help scientists generate 
or refine existing models. Great advances are resulting 
from machine learning in science, particularly in 

bioinformatics, economics, social sciences, ecology and 
climate science. 

But learning from data alone is often not the most efficient 
means when studying complex phenomena.  Instead it is 
often helpful to include prior knowledge. Advanced 
knowledge representation techniques that capture important 
structural and process characteristics could provide 
valuable domain knowledge to machine learning 
algorithms, and have a significant impact on our ability to 
understand complex scientific phenomena. 

This paper explores possible synergies between machine 
learning and knowledge representation approaches to 
capturing scientific knowledge. To provide the reader with 
an intuitive understanding of the type of scientific 
knowledge that can be gained through machine learning, 
we first discuss two sample machine learning methods.  
Then we give an overview of the capabilities of modern 
knowledge representation systems. We explore synergies 
between these areas through a discussion on how machine 
learning models can be integrated in existing knowledge 
representation frameworks, and vice versa. 

2. MACHINE LEARNING MODELS 
Machine learning models are simply models learned 
automatically, primarily from sample data of the studied 
system. The majority of those models are developed for 
specific tasks, such as prediction or classification, while 
some are developed specifically for system identification. 

In this context we distinguish two different types of 
machine learning models:  

(1) Black box models are models that only seek to mimic 
the input-output relationships of the real-world system 
without caring about the internal relationships. In other 
words, black box models aim at, given a certain input to the 
system, yielding the same output of the system as the real-
world system would. Classic regression models are a 
typical example.  

(2) Clear box models (also called white box or glass box 
models) seek to also internally mimic the key relationships 
inside the real-world system as truthfully as possible. An 
example is any model obtained using causal discovery 
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methods, e.g. certain probabilistic graphical models trained 
from data.  

In practice the distinction between black and clear box 
models is not crisp, i.e. models are more on a continuum. In 
fact, many models that are meant to be only black box 
models end up encoding information about some of the 
internal structure of the system. To make this discussion 
more concrete, this section provides two examples of 
machine learning models that can be interpreted as 
representing scientific knowledge.  We chose two very 
different methods, namely probabilistic graphical models - 
that are intended to be clear box models - and artificial 
neural networks - that were originally intended as black 
box models. 
 

2.1 Probabilistic Graphical Models 
The type of machine learning model that is probably most 
closely related to standard methods of knowledge 
representation is a probabilistic graphical model.  Indeed,  
probabilistic graphical models (or graphical models for 
short)  are often described as ontologies supplemented with 
probabilities.  See [1] for a basic introduction to the topic, 
or [2,3] for more detailed information.  

Figure 1 demonstrates a very simple graphical model, 
namely the classic sprinkler model.  The sprinkler model 
encodes the relationships between three different variables 
of a lawn: Sprinkler represents whether the sprinkler 
system has recently been activated, Rain represents whether 
it recently rained in the neighborhood of the lawn, and 
Grass wet represents whether the grass is wet.  The 
relationships in this model indicate that whether it rained 
has an influence on whether the sprinkler system was 
activated, i.e. the sprinkler may have manually been turned 
off if there was recent rain.  Furthermore, whether the grass 
may be wet is affected by whether the sprinkler recently ran 
and whether there was a recent rain.  The graphical 
structure of the model represents these cause-effect 
relationships, where the arrows always go in the direction 
from cause to effect. All three variables in this simple 
example are assumed to be binary, i.e. each can only take 
the values true (T) or false (F).   The tables next to each 
variable in Figure 1 provide the probabilities for the 
occurrence of its states, based on the states of all of its 
parents.  For example, the probability that the grass is 

detected as wet, if it is known that the sprinkler was turned 
off and that it recently rained in the neighborhood, is 0.8.   

While the sprinkler system provides a tiny example, a 
graphical model may have 100s or even 1,000s of nodes. 
The type of graphical model shown in Figure 1, where all 
edges are directed, is known as a Bayesian network.  An 
undirected model is known as a Markov network.  

2.1.1 Learning graphical models 
Graphical models can be generated completely from expert 
knowledge - that is often done in the medical field by 
asking medical professionals.  They can also be learned 
completely from sample data - that is often done in 
bioinformatics and recently in climate science.  Often a 
combination of both is used, i.e. learning the model from 
data while constraining the learning based on expert 
knowledge.   

Learning such a model involves two major parts, namely 
(1) learning the graph and (2) learning the probabilities.  
The former part, namely learning the graph structure, is 
known as structure learning. The latter part, namely 
learning the probabilities, is known as parameter learning. 
Structure learning is a very complex problem - especially 
given the fact that the potential existence of hidden 
common causes has to be taken into account [2,3], and that 
the computational complexity considering 100s and 1,000s 
of variables is very high.  Nevertheless, structure learning 
has been applied successfully and generated new 
knowledge in many applications with a large number of 
variables, for example in bioinformatics to identify protein-
protein interactions and gene regulatory networks [4].  In 
climate science they have been used to identify pathways of 
interactions of dynamical processes around the globe [5]. In 
contrast, parameter learning, i.e. learning the probabilities 
of the model once the graph structure is known, is a 
comparatively easy task. 

2.1.2 Inference with graphical models 
Bayesian networks are often used for the purpose of 
inference.  For example, if we know the states of certain 
variables, the model allows us to enter those states, then 
propagates them through the model so that the probabilities 
of all other variables can be inferred.  For example, for the 
sprinkler system one may ask, if we know that the grass is 
currently wet, what is the probability that the sprinkler 

	
  
Figure 1. The classic sprinkler example is one of the simplest probabilistic graphical models.  



recently ran or the probability that it recently rained?  Such 
inferences are particularly helpful for example for medical 
diagnosis.  Given that we see certain symptoms in a patient, 
which disease included in the model is the most likely 
cause? 

However, an entirely different use of graphical models, 
which is often referred to as causal discovery, has recently 
emerged and is gaining popularity.  The idea of causal 
discovery is that we use structure learning to learn the 
graph model from data, and the resulting graph (with or 
without probabilities) is the end result of the learning 
process.  Namely, rather than using the model as a tool for 
inference, we study the model itself to learn about the 
potential cause-effect relationships that were identified 
[3,4,5].   

In summary, causal discovery seeks to identify the potential 
cause-effect relationships between variables of a system 
under consideration from observations, and to encode them 
in a graph representation of the type shown in Figure 1.  
This graph representation is a form of knowledge 
representation that captures scientific knowledge. 

2.2 Artificial Neural Networks and Deep 
Learning 
The key idea behind neural networks - of which deep 
learning networks are a special case - is to mimic the way 
the human brain works.  The brain consists of a network of 
neurons that are connected to each other through signal 
pathways.  Artificial neural networks (ANNs) seek to 
mimic this type of structure, by modeling each neuron as a 
node of a simulated network, but in this artificial version all 
neurons are arranged in layers. Each connection in the 
network has a weight assigned to it that indicates the 
strength of the connection and is learned from data during 
an initial training phase.  

There are three types of nodes, input nodes, hidden nodes 
and output nodes, as shown in Fig. 2.  The input nodes are 
in the first layer (on the left in Fig. 2), followed by one or 
more layers of hidden nodes (center in Fig. 2) and finally 
one layer of output nodes.  Each input node takes in 

information from an external source.  For example if the 
network is used for image processing each input node may 
represent the intensity of exactly one pixel in an image.   

The value that any node takes is called its activation level.  
The values of the input nodes are then passed on to the next 
level (to the right) through the connections in the network, 
where the amount of signal being passed on depends on the 
connection weights. The activation levels are passed 
through those weighted pathways from layer to layer until 
they reach the output layer. The activation levels of the 
output nodes then represent the output of the model. Only 
the nodes in the input and output layers have a predefined 
meaning, while all the nodes in the hidden layers are meant 
to have no specific (pre-conceived) meaning, just like the 
majority of neurons in the human brain do not start out with 
a specific meaning before they are being trained to serve 
some specific function. 

Obviously, this is a very simple model compared to the 
incredible complexity of the human brain, but it has led to 
very interesting results and insights. Furthermore, ANNs 
are very useful because they yield statistical approximation 
methods that are both robust and hierarchical. New 
methods for training such networks developed in the past 
ten years have made it possible to train networks with a 
very large number of hidden layers, known as deep 
learning networks (or deep networks for short). Deep 
networks are a hot topic in machine learning, because they 
can achieve superior results for tasks such as image 
recognition, speech recognition and natural language 
processing. 

2.2.1 Example: Recognizing written digits 
This section illustrates artificial neural networks using an 
example provided by Michael Nielsen in his free online 
book [6].  Figures 3 to 6 in this section are all from [6] 
(reuse is permitted under Creative Commons Attribution-
NonCommercial 3.0 Unported License, see 
https://creativecommons. org/licenses/by-nc/3.0/us/.) As 
shown in Figure 3, the ANN for this application uses only 
one hidden layer. This particular network was designed to 
recognize a single hand-written digit, from an image that is 
28x28 pixels, i.e. 784 pixels.  The values for each pixel are 
fed, one by one, into the input layer of the network (thus 
there are 784 neurons in the input layer). Figure 4 provides 
an example of such hand-written images. 

The output layer of the network contains 10 different 
neurons, one for each digit that might occur (numbers 0 to 
9). The network is trained to minimize the number of errors 
made at the output layer.  Details can be found in [6].  Once 
the network is trained to recognize the digits, we feed the 
28x28 image of a digit to be recognized into the 784 input 
neurons, then check which of the output neurons has the 
highest activation level, indicating which digit the system 
believes is most likely encoded in the image.   

	
  
Figure 2: Artificial neural network (ANN).  

 



How does the system achieve this task?  And what role 
does the hidden layer of neurons play? It turns out that 
neurons in the hidden layer may look for certain 
combinations of input pixels to be present in the image.  
For example, to recognize the number zero, one neuron in 
the hidden layer may look for the presence of a pattern like 
the one in Figure 5(a), while other neurons may be looking 
for the other patterns in Figure 5. The neurons in the hidden 
layer achieve that functionality by weighing pixels that 
overlap with the partial pattern they are responsible for.  
These four image patterns together allow us to recognize 
the digit 0 (Fig. 6).  In other words, if the four neurons in 
the hidden layer responsible for detecting the partial image 
patterns above all have high activation 
levels, then - due to the connectivity of 
the network achieved through training 
- the neuron in the output layer that 
represents the digit 0 is highly 
activated. 

2.2.2 Neural networks are no longer black boxes 
Neural networks were designed to act as black box models, 
i.e. the meaning of the nodes in the hidden layers was often 
interpreted to be of little relevance.  This has changed 
drastically especially with the advent of deep learning 
networks.  Study of the hidden nodes revealed that with 
each additional layer, the model is able to achieve higher 
layers of abstraction. The first layers can only represent 
some very basic properties (such as the presence of partial 
image patterns such as in Figures 5), while consecutive 
layers can build on the properties encoded in the first layers 
to encode properties of increasingly higher abstraction.  
Studying how the model chooses to represent the data 
reveals much about the internal properties of the data.  For 
this example the system was able to decompose the input 
data into basic building blocks, such as the ones in Figures 
5 and 6. The key point is that the network chose the 
building blocks all by itself. Similarly, if instead of images 
of hand-written digits we provide only images of faces to a 
similar network, the network decomposes the face images 
into building blocks, such as ears, eyes, noses, etc., that 
make it possible for the system to recognize whether an 
image is a face [7].  More importantly, we can learn from 
the building blocks what important components a human 
face consists of.  For a human face, the resulting building 
blocks are not really surprising and not that new, since face 
recognition is a task that our brains are already well trained 
in.  However, our brains clearly are not well trained at 
looking at observed data from complex natural systems and 
finding patterns - so what patterns (building blocks) would 
the network find there?  How do those patterns help us 
understand the system being studied?  Imagine how much 
better we could understand natural systems, say ocean 
currents or the formation of tornadoes, if computers could 
help us gain an intuitive understanding of the observed data 
by decomposing it into the equivalent of ears, eyes and 
noses? 

Thus, although originally designed as a black box model, 
we can now learn from the ANN model itself, which means 
that this type of ANN model itself represents new insights 
that can lead to new scientific knowledge of the system, by 
recognizing building blocks or important features, as 
proposed for example for climate data in [8].  

Although we only discussed two methods here, there are 
many other types of machine learning methods that 
encapsulate scientific knowledge each in their own way. 

3.  KNOWLEDGE REPRESENTATION 
Many different models are used in the field of knowledge 
representation.  Most models are based on first-order logic, 
either as a subset or as an extension of it. 

3.1 First-Order Logic 
Some researchers favor first-order logic because of its 
expressive power and inference capabilities.  Recent work 
on Markov logic networks [9] combines first-order logic 

	
  
Figure 3: Three-layer neural network with 784 neurons in 
input layer, 15 neurons in hidden layer and 10 neurons in 

output layer.  Image source: [6].	
  
 

 
Figure 4:	
  Example of individual hand-written digits to be 

recognized by neural network. Image source: [6].	
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Figure 5: Partial image patterns. Image source: [6].	
  
 

Figure 6: Digit zero. 



and probabilistic graphical models, and could be a bridge 
between machine learning and knowledge representation 
work.  

3.2 Ontologies 
Ontologies offer a small subset of the expressivity of first 
order logic that is computationally tractable.  They are 
widely adopted in many sciences, notably in biomedical 
research. 

Figure 7 illustrates how knowledge is represented in 
ontologies.  Many ontologies simply represent classes and 
their properties, as in traditional AI frame systems. In 
Figure 7(a), the class “lake” has several subclasses (rift, 
closed, and natural lakes), and also several properties  
(catchment, outflow, and inflow).  Properties are 
constrained by what values they can take.  In this example, 
the outflow must be a river.    Classes can have definitions 
based on constraints on their properties.  Figure 7(b) shows 
an example, where an open lake is defined as a type of lake 
that has at least one outflow, and a closed lake is a lake that 
has no outflow. These classes and properties are used to 
describe objects.  Shown in Figure 7(c) are several 
assertions about the object Lake Baikal, for example that it 
has inflow from Barzugin and Selenga and has an area of 
catchment of 560,000 km2.   

Ontological reasoners can make inferences on these 
representations.  An example of inference is inheritance, 
where the properties of a class are applied to all its 
subclasses and any asserted objects of that type.  Inferences 
can be made about the classes of new objects asserted in 
the system.  In the examples in Figure 7, since the inflow 
and outflow of lakes are to rivers, the system can infer that 
Barzugin, Selenga, and Angara are all rivers.  These 
reasoners can also be used to answer questions about rivers 
that flow into Lake Baikal.  A major use of ontologies is to 
ensure that all the data about objects is consistent with what 
is expected of the world.  So if someone indicated that Lake 

Baikal is a closed lake then the system would indicate it as 
an inconsistency. 

The most popular languages to represent ontological 
knowledge are used to represent knowledge on the web.  
The Resource Description Framework (RDF) [10] provides 
a simple frame-like representation with very limited 
inference capabilities.  The Web Ontology Language 
(OWL) offers the representation and inference capabilities 
of a description logic, similar to those illustrated in Figure 
9.  A major shift in ontological knowledge representation in 
the last decade has been that all the concepts and objects in 
knowledge bases are Web objects and openly accessible 
from a URI.  As a result, they can be easily reused and 
mixed with the contents of other sources to create new 
knowledge bases. Massive amounts of knowledge are 
available in this form, and known as Linked Open Data. 

3.3 Process Representations 
Scientific knowledge includes descriptions of the behaviors 
of systems or phenomena that change over time. 
Qualitative representations are qualitative abstractions of 
quantitative data about a system.  For physical processes, 
ordinary differential equations are often used to describe a 
system quantitatively. Figure 8 shows an example of 
abstractions to represent a system qualitatively (taken from 
[11]), where some qualitative attributes of a curve can be 
used to turn detailed quantitative data in a curve about 
material deformation and creep into a set of logic rules to 
assess elasticity properties.  These qualitative 
representations are used for simulation as well as for causal 
reasoning.  Qualitative representations reduce the 
computational complexity over quantitative models, enable 
explanation generation, and facilitate exploration of what-if 
scenarios. Special treatment is given to spatial and temporal 
abstractions, as well as descriptions of states, state 
transitions, and behaviors.  A crucial issue is the 
composition  of qualitative  reasoning  models to enable the  
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about Objects 
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Figure 7.  Ontologies to represent descriptive and factual knowledge: (a) classes and subclasses can be defined, each with their 
properties; (b) some classes can have definitions based on constraints on their properties; (c) assertions can be made about objects and 
their properties. 



 

treatment of a physical system as a “system of systems”.  
An introductory overview is provided in [12].   Qualitative 
representations are often used in combination with 
ontologies that describe system components or situations. 
AI planning approaches represent processes by 
decomposing them into individual actions with 
preconditions and effects.  Figure 9 shows an example of 
an action for boiling water taken from [13]. The conditions 
and effects can be used to generate plans composed of 
actions given an initial state and a desired goal.   
A number of additional formalisms have been proposed by 
knowledge representation researchers to address state 
changes, resource use, temporal reasoning, and other 
aspects of reasoning about actions and plans. 

4. EXPLORING SYNERGIES 
This article aims to stimulate discussion and cooperation 
between the machine learning and knowledge 
representation communities in representing scientific 
knowledge, by leveraging and merging existing techniques 
from both disciplines.  

4.1 Existing Work 
There are several areas in which such cooperation has 
already taken place.  For example, Markov logic networks 
(MLNs) combine the frameworks of first order-logic and 
probabilistic graphical models [9] in order to add a 
probabilistic component to knowledge bases. Namely, the 
formulas of a first-order knowledge base imposes hard 
constraints on the set of possible worlds - if a world 
violates even one formula, it has zero probability. MLNs 
add weights to these formulas to soften these constraints - 
as a result a world that violates one formula is just less 
probable.  Similarly, knowledge-based model construction 
(KBMC) combines logic programming and Bayesian 
networks [14], and is a precursor of MLNs and can in fact 
be seen as a special case of MLNs [9].  [9] also discusses 
several other related approaches, including probabilistic 
relational models, relational Markov networks and other 
logic programming approaches. 
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TABLE III
QUALITATIVE CHARACTERIZATION OF GRAPHICAL PROPERTIES
FEATURED IN A TIME POINT OR INTERVAL BY MEANS
OF QUALITATIVE VALUES OF CURVE DESCRIPTORS

Fig. 6. Data segmentation in view of qualitative curve description.

on time points , as follows:
if curve is
vertical at AND steep at
OR steep at AND vertical at

then
instantaneous-elasticity property holds

True
else
instantaneous-elasticity property holds

False
endif

(of course, in accordance with Table III, vertical at
AND vertical at implies instantaneous-

elasticity property holds True since vertical
implies steep.)
Viscosity: Viscosity is characterized by an irrecoverable

deformation due to energy dissipation. In an experimental
data plot, such a property is highlighted by an eventual linear
growth at late loading or, equivalently, by a finite positive
residual strain as goes to infinity.

As regards the creep stage, the significant time interval can
be identified as follows:

Similarly, a time interval is defined to characterize a
weakly linear region. On recovery, in order to reason about
asymptotic attributes, a time interval

is implicitly introduced. The qualitative value of the
asymptotic strain is derived by an approximation
of obtained by extrapolating the late recovery
points under a simple exponential decay model.
By combining creep and recovery reasoning, viscosity is

finally assessed as follows:

if curve is
linear-and-growing at
AND
asymptotically-positive-horizontal at
OR weakly-linear-and-growing at
AND
asymptotically-largely-positive-
horizontal

at
then
viscosity property holds True

else
viscosity property holds False

endif.

Delayed Elasticity: In order to reason about delayed elas-
ticity, the curve concavity over the time interval [

for creep, and similarly defined for recovery
as in Fig. 6] must be ascertained. As data are usually affected
by measurement errors, the expert interpretation is performed
through a subjective visual smoothing that can be emulated in
a number of ways, a simple and quite natural one consists of
reasoning by intervals rather than pointwise. At first, the proper
time interval is divided into subintervals , each of them
containing a sufficient number of experimental points, and
then is defined as the most frequent of the pointwise
computed signs of . Therefore, the creep curve concavity is
assessed by the clause

if
then
delayed-elasticity property holds False

else
perform interval partitioning
if curve is
loosely-concave at any
AND
concave for at least one

then
delayed-elasticity property holds True

else
delayed-elasticity property holds
False

endif
endif.

 
(a) 
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asymptotic strain is derived by an approximation
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if curve is
linear-and-growing at
AND
asymptotically-positive-horizontal at
OR weakly-linear-and-growing at
AND
asymptotically-largely-positive-
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then
viscosity property holds True

else
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ticity, the curve concavity over the time interval [

for creep, and similarly defined for recovery
as in Fig. 6] must be ascertained. As data are usually affected
by measurement errors, the expert interpretation is performed
through a subjective visual smoothing that can be emulated in
a number of ways, a simple and quite natural one consists of
reasoning by intervals rather than pointwise. At first, the proper
time interval is divided into subintervals , each of them
containing a sufficient number of experimental points, and
then is defined as the most frequent of the pointwise
computed signs of . Therefore, the creep curve concavity is
assessed by the clause

if
then
delayed-elasticity property holds False

else
perform interval partitioning
if curve is
loosely-concave at any
AND
concave for at least one

then
delayed-elasticity property holds True

else
delayed-elasticity property holds
False

endif
endif.

 
(b) 
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if curve is
vertical at AND steep at
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weakly linear region. On recovery, in order to reason about
asymptotic attributes, a time interval

is implicitly introduced. The qualitative value of the
asymptotic strain is derived by an approximation
of obtained by extrapolating the late recovery
points under a simple exponential decay model.
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linear-and-growing at
AND
asymptotically-positive-horizontal at
OR weakly-linear-and-growing at
AND
asymptotically-largely-positive-
horizontal

at
then
viscosity property holds True

else
viscosity property holds False

endif.

Delayed Elasticity: In order to reason about delayed elas-
ticity, the curve concavity over the time interval [

for creep, and similarly defined for recovery
as in Fig. 6] must be ascertained. As data are usually affected
by measurement errors, the expert interpretation is performed
through a subjective visual smoothing that can be emulated in
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time interval is divided into subintervals , each of them
containing a sufficient number of experimental points, and
then is defined as the most frequent of the pointwise
computed signs of . Therefore, the creep curve concavity is
assessed by the clause

if
then
delayed-elasticity property holds False

else
perform interval partitioning
if curve is
loosely-concave at any
AND
concave for at least one

then
delayed-elasticity property holds True

else
delayed-elasticity property holds
False

endif
endif.

 
(c) 

Figure 8.  Qualitative reasoning about processes involves 
creating abstractions about a system under and using them to 
reason about  how it behaves.  Shown here are examples by 
[11] from materials science, with abstractions shown in (a), 
how the abstractions are used to describe the actual behavior 
of the system, in this case creep deformation of a material (b), 
and how the qualitative abstractions are used in logic rules to 
reason about the system (c). 

 
Figure 9. A representation for the process of heating water as 
an action with conditions and effects (from [McDermott 
2000].   



ANNs have been used successfully for reasoning in 
knowledge bases. For example, Bordes et al. [15] and 
Socher et al. [16], seek to infer new relations between 
entities from existing relationships between other entities in 
the database.  Both use variations of ANNs for that 
purpose.  Bordes et al. [15] propose their method to transfer 
knowledge between different databases and to integrate the 
database knowledge into machine learning methods.  Thus 
in the latter case, machine learning becomes both the means 
of integration (in this case ANNs), as well as the target of 
the integration.  Another approach is Knowledge-Based 
Artificial Neural Networks (KBANN) [17], which map 
domain knowledge represented in propositional logic into 
ANNs.  In KBANN, the assertions are used to create the 
structure of the network, and the learning algorithms extend 
the network and adjust the weights based on the examples.  

4.2 Additional Synergistic Research Areas  
Fig. 10 provides a general overview of potential synergistic 
interactions between KR and ML research.  The KR box on 
the left indicates the standard process of KR leading from 
experts and literature to formal knowledge.  The ML box 
on the right indicates the standard process of ML leading 
from observed data of a system under consideration to a 
model from which knowledge can be extracted.  However, 
this type of knowledge, which we in the following refer to 
as learned knowledge, is often not represented in a formal 
way that would be easy to use for outsiders. 

Fig. 10 lists six types of potential interactions (1-6), which 
are discussed below.  Some of them point out how KR 
research can be useful for ML research. Others point out 
how ML models can benefit KR research.  The last two 
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Figure 10: Overview of potential synergistic interactions between KR and ML research 



mentioned would open the way to fundamentally new 
capabilities resulting from synergistic research. 

4.2.1 Extending KR Frameworks to Represent ML 
Results  
In order for learned knowledge to be useful for scientific 
discovery, it must be represented in a way that is easily 
accessible and understandable for domain experts.  For 
example, the specific parameters of a ML model have no 
meaning for someone who is not an expert in the particular 
ML method used, but that information also cannot be 
expressed in first-order logic and its derivatives. Thus we 
need to find ways to translate that type of information into 
information meaningful to a domain expert.  This requires 
(1) significant research on the ML side, namely to develop 
methods for extraction of the information for each type of 
ML technique; and (2) significant collaboration with KR 
researchers to develop formalisms that capture the 
knowledge and are easy to understand by domain experts. 
Basically, a new language must be developed for ML 
methods, that is meaningful and accessible to domain 
experts.  Markov logic networks [9] provide an example of 
such research, as they extend the KR framework to include 
the probabilistic component inherent in probabilistic 
graphical models.  Many more such extensions are needed. 

4.2.2 Using KR to Guide ML Models 
Formal knowledge captured by KR methods represents a 
wealth of expert knowledge for many domains.  Many ML 
methods are able to use such information as constraints 
while building the models, but currently there seems to be 
little interaction between the two areas.  Suggestions: One 
could use information about a domain contained in 
ontologies to select which variables to include in a 
graphical model or neural network.  Furthermore, one can 
constrain structure learning of graphical models by 
providing a list of forced and forbidden connections, 
obtained for example from ontologies. In cases where 
domain knowledge in KR is particularly rich, one could 
even extract initial structures from domain ontologies and 
use them as initial guess to be refined by structure learning 
of graphical models. Likewise, many other ML methods 
allow to enter prior knowledge to constrain the learning 
process.  It seems that a major hurdle is simply that the ML 
community is not fully aware of the domain knowledge 
available through KR, and that the KR community is not 
fully aware of the things the ML community could do with 
that knowledge.   

A specific research area that would have high impact is to 
enrich learning models with spatio-temporal reasoning. A 
variety of spatial and temporal representations have been 
investigated in knowledge representation, which could be 
exploited by machine learning algorithms to frame learning 
based on a spatio-temporal basis. 

4.2.3 Explaining and Verifying ML Models with KR 
After a model is learned using machine learning methods - 
with or without the use of KR information - we can use 
formal knowledge to verify the results. For example, a 
graphical model could be mapped into a domain ontology 
in order to check whether its variables or components have 
a counterpart in the ontology and the inferences made are 
sound and consistent with the model.  The classes and 
properties in an ontology about the particular domain might 
yield hints for the interpretation of hidden nodes in 
graphical models or neural networks. 

A related use of KR information is to verify the results of a 
learned model, where the lack of an explanation would 
indicate potential issues in learned models. For example, a 
graphical model could be mapped into a domain ontology 
in order to check whether its variables or components have 
a counterpart in the ontology and the inferences made are 
sound and consistent with the model. 

4.2.4 Merging Learned Knowledge with Formal 
Knowledge 
Just like formal knowledge can be used to guide ML 
methods, ML results can also be used to inform ontologies.  
Ontologies could be augmented with concepts and 
properties formulated from components of learned models.  
A learned model exposes new variables in graphical models 
or meanings of hidden nodes in neural networks, which 
could be used to propose extensions to domain ontologies.  
In addition, learned models ground the knowledge with 
data, providing context for the knowledge in terms of 
situations and hypotheses. 

Another possibility would be to create ontologies from the 
structures of learned models.  Graphical models or neural 
networks could be used to generate new ontologies to 
represent knowledge in new areas, or to bridge across 
existing ontologies that are partially covered by the training 
data. 

4.2.5 Generalizing Learned Models Through Formal 
Knowledge  
Ontologies include hierarchies of classes of objects in the 
domain and their associated common properties, which 
could be used as a generalization bias by machine learning 
algorithms.  This could help in generalizing learned 
models, particularly when few examples are available.  

4.2.6 Linking Learned Models  
Different learned models could be mapped to different 
subsets of an ontology (or of several mapped ones).  Then, 
the ontology could be used to propose mappings that link 
together the learned models.  This could enable new forms 
of multi-model learning, where a different algorithm could 
be used to learn from different aspects of the data, and the 
learned models would then be integrated together. 



5. CONCLUSIONS 
There are significant potential synergies between the areas 
of machine learning and knowledge representation.   
Knowledge representation researchers may find a new area 
of interest in studying machine learning representations and 
integrating them into existing frameworks.  Machine 
learning experts may learn new ways to leverage their 
models by incorporating knowledge representation 
techniques.  Novel research could be enabled through these 
synergistic areas of work. 
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